BIM Door for Revit

Michael Plat • 7. Oktober 2021

This is the Revit plugin of our own development.
The idea behind this plugin belongs to Michael Plat (kontakt[at]bim-plat.de)
and is developed by Alexandr Grigoryev (argrigoryev[at]icloud.com).

The app automatically evaluates the following door properties:

  • [Door Side]
  • [To Room Number]
  • [To Room Name]
  • [From Room Number]
  • [From Room Name]
  • [Wall Type]
  • [Wall Width]
ATTENTION:
  • The app does not work with linked Revit models. All objects such as doors, walls and rooms must be in a Revit file.
  • After installation, the following parameters are automatically added to the Revit project: [Door Side Yes/No], [Door Side], [To Room Number], [To Room Name], [From Room Number], [From Room Name], [Wall Type], [Wall Width]

Otherwise, please watch a short video on how to use the app.

Privacy Policy

bim-Plat GmbH built the BIM Doors app as a Commercial app. This SERVICE is provided by bim-Plat GmbH and is intended for use as is.

This page is used to inform visitors regarding [my/our] policies with the collection, use, and disclosure of Personal Information if anyone decided to use [my/our] Service.

If you choose to use [my/our] Service, then you agree to the collection and use of information in relation to this policy. The Personal Information that [I/We] collect is used for providing and improving the Service. [I/We] will not use or share your information with anyone except as described in this Privacy Policy.

The terms used in this Privacy Policy have the same meanings as in our Terms and Conditions, which is accessible at BIM Doors unless otherwise defined in this Privacy Policy.

Information Collection and Use

For a better experience, while using our Service, [I/We] may require you to provide us with certain personally identifiable information, including but not limited to bim-Plat. The information that [I/We] request will be [retained on your device and is not collected by [me/us] in any way]/[retained by us and used as described in this privacy policy].

Log Data

[I/We] want to inform you that whenever you use [my/our] Service, in a case of an error in the app [I/We] collect data and information (through third party products) on your phone called Log Data. This Log Data may include information such as your device Internet Protocol (“IP”) address, device name, operating system version, the configuration of the app when utilizing [my/our] Service, the time and date of your use of the Service, and other statistics.

Cookies

Cookies are files with a small amount of data that are commonly used as anonymous unique identifiers. These are sent to your browser from the websites that you visit and are stored on your device's internal memory.

This Service does not use these “cookies” explicitly. However, the app may use third party code and libraries that use “cookies” to collect information and improve their services. You have the option to either accept or refuse these cookies and know when a cookie is being sent to your device. If you choose to refuse our cookies, you may not be able to use some portions of this Service.

Service Providers

[I/We] may employ third-party companies and individuals due to the following reasons:

To facilitate our Service;
To provide the Service on our behalf;
To perform Service-related services; or
To assist us in analyzing how our Service is used.
[I/We] want to inform users of this Service that these third parties have access to your Personal Information. The reason is to perform the tasks assigned to them on our behalf. However, they are obligated not to disclose or use the information for any other purpose.

Security

[I/We] value your trust in providing us your Personal Information, thus we are striving to use commercially acceptable means of protecting it. But remember that no method of transmission over the internet, or method of electronic storage is 100% secure and reliable, and [I/We] cannot guarantee its absolute security.

Links to Other Sites

This Service may contain links to other sites. If you click on a third-party link, you will be directed to that site. Note that these external sites are not operated by [me/us]. Therefore, [I/We] strongly advise you to review the Privacy Policy of these websites. [I/We] have no control over and assume no responsibility for the content, privacy policies, or practices of any third-party sites or services.

Children’s Privacy

These Services do not address anyone under the age of 13. [I/We] do not knowingly collect personally identifiable information from children under 13 years of age. In the case [I/We] discover that a child under 13 has provided [me/us] with personal information, [I/We] immediately delete this from our servers. If you are a parent or guardian and you are aware that your child has provided us with personal information, please contact [me/us] so that [I/We] will be able to do necessary actions.

Changes to This Privacy Policy

[I/We] may update our Privacy Policy from time to time. Thus, you are advised to review this page periodically for any changes. [I/We] will notify you of any changes by posting the new Privacy Policy on this page.

This policy is effective as of 2021-08-28

Contact Us

If you have any questions or suggestions about [my/our] Privacy Policy, do not hesitate to contact [me/us] at kontakt(at)bim-plat.de.

von Michael Plat 5. November 2025
Gemeinsam mit Leica Geosystems haben wir einen Videokurs entwickelt, der den Aufbau eines historischen Dachstuhls in Autodesk Revit zeigt. Wir führen euch Schritt für Schritt durch den gesamten Prozess – von der Punktwolke bis zum fertigen 3D-Modell. Im Kurs werden zwei Ansätze vorgestellt: die klassische Modellierung mit Trägerfamilien und die adaptive, parametrische Arbeitsweise – mit deutlichen Unterschieden in Präzision und Flexibilität. Der Schwerpunkt liegt auf der adaptiven parametrischen Modellierung – einer Methode, mit der sich selbst komplexe Geometrien flexibel und effizient abbilden lassen. Ziel des Kurses Erstellung eines Revit-Modells einer historischen Dachkonstruktion (Holzbau), das auf einer Punktwolke basiert. Dabei werden zwei Methoden verglichen:  Klassische Modellierung mit Balkenfamilien Adaptive Modellierung mit parametrischen Familien Kursablauf – Arbeitsschritte Vorbereitung Archiv mit Projektdateien herunterladen und entpacken Projekt in Autodesk Recap anlegen (E57-Datei importieren) Punktwolke bereinigen und Koordinatenursprung korrekt setzen Einrichtung in Revit Neues Projekt starten, Punktwolke verknüpfen Achsen, Ebenen und Bearbeitungsbereiche anlegen Punktwolke in Revit richtig platzieren und fixieren Sichtbarkeitsbereiche (Scope Box, View Range) einstellen Konzeptionelle Modellierung Erstellung einer konzeptionellen Dachform mit Referenzpunkten und -linien Aufbau von Dach- und Turmgeometrien Parametrische Steuerung (z. B. Dachwinkel, Höhen, Punkte) Erstellung von adaptiven Linien und Flächen für spätere Holzrahmen Architektonische Modellierung Aufbau von Dach-, Boden- und Wandflächen auf Basis der konzeptionellen Form Einfügen von Öffnungen (Fenster, Schornsteine) Arbeiten mit Ansichtsvorlagen und Sichtbarkeitseinstellungen Klassische Holzmodellierung Verwendung einer Trägerfamilie (Beam Family) Balken nach Punktwolkengeometrie ausrichten Manuelle Winkel- und Schnittanpassungen über Parameter Nachteile: hohe manuelle Nacharbeit bei Änderungen Adaptive Holzmodellierung Verwendung adaptiver Komponentenfamilien mit Referenzlinien Automatische Anpassung an konzeptionelle Form Platzierung von Sparren, Pfetten, Stützen und Streben Parametrische Steuerung von Winkeln, Offsets und Längen Deutlich flexiblere Anpassung an Änderungen der Form Verfeinerung und Detailierung Einfügen von Diagonalsparren, Querstreben, Pfetten und Stützen Anwendung von Schnittfamilien zur präzisen Verbindungen Überprüfung der Anpassungsfähigkeit (Parametrisierungstest) Abschluss Zusammenführen der Geometrie Kontrolle in 3D- und Schnittansichten Synchronisation und Abschluss des Projekts Vergleich beider Methoden (klassisch vs. adaptiv)
von AEC Magazine 5. November 2025
AI platform designed to turning know-how from past projects into “design Intelligence” The post AI extracts knowledge from past projects appeared first on AEC Magazine.
von AEC Magazine 4. November 2025
Nexus from CMiC offers natural language processing, “construction intelligence” and agent-driven automation The post AI-powered construction ERP platform launches appeared first on AEC Magazine.
von AEC Magazine 31. Oktober 2025
AI analyses drawings and specifications then automatically extracts product information The post mbue launches AI-powered submittals appeared first on AEC Magazine.
von AEC Magazine 31. Oktober 2025
New tool helps build stronger financial cases for water infrastructure investments The post CivilSense ROI Calculator launches appeared first on AEC Magazine.
von AEC Magazine 31. Oktober 2025
Planradar report reveals inconsistent QA/QC leads to reduced visibility, putting projects at risk of higher costs and lower margins. The post Inconsistent QA/QC standards threatening construction profits appeared first on AEC Magazine.
von AEC Magazine 29. Oktober 2025
Structural analysis and design software puts spotlight on mobile loads and code compliance The post Scia Engineer 2026 launches appeared first on AEC Magazine.
von AEC Magazine 29. Oktober 2025
Digital twin pilot project analyses data captured by real-time cameras The post City of Raleigh using AI to gain insight into traffic appeared first on AEC Magazine.
von AEC Magazine 29. Oktober 2025
Acquisition will help strengthen OpenSpace’s “Visual Intelligence Platform” The post OpenSpace acquires construction progress tracking firm Disperse appeared first on AEC Magazine.
von AEC Magazine 9. Oktober 2025
The hidden threat inside EULAs, Autodesk shows its AI hand, Chaos embraces AI and lots more The post AEC Magazine September / October 2025 appeared first on AEC Magazine.