Inventor to Revit

Michael Plat • 15. Januar 2024

Autodesk have enhanced some already fantastic tools that allow us to work with Inventor and Revit together. We have been able to export our Inventor designs, such as light fittings or plumbing fixtures, out for a while now using the BIM Content tool, however we can also export our designs directly as Revit files to be linked into a larger Revit Project. This is especially useful for businesses such as kitchen fitters or joiners, where you are working to bespoke dimensions.


Using Inventor’s AnyCAD functionality and the Interoperability tools, you can import a Revit file into Inventor to use as a reference model, and then design your product or constrain your product to the correct location using that imported geometry.


For our example today, we will be using an office floorplan and adding in a bespoke shelving unit.


The standard workflow is as follows:


  1. Create 3D view in Revit to be imported into Inventor.
  2. Import Revit 3D view in Inventor and reduce the complexity of the view.
  3. Create or import Inventor design using Revit geometry as a reference.
  4. Export Inventor design out to Revit.
  5. Import Inventor design into Revit.

Repeat steps 1-5 to make more adjustments to the same project.

1. Create 3D view in Revit.

We require a 3D Revit view, which we need to simplify down to only include the required geometry. In the example above, we have removed the rest of the building and only included the space where we will be installing the shelving unit, as well as any office furniture that has the potential to get in the way. 


2. Import Revit 3D view in Inventor.

In Inventor, open a blank assembly. In the Assemble tab click the Place dropdown and then select Place Imported CAD Files. Navigate to the Revit project and open it. This brings up the AnyCAD Import Window. Keep the file as a Reference Model and select the specific 3D view from the drop-down menu. You can further reduce the number of elements by unselecting specific categories. Press OK.

Right click, and select Place Grounded at Origin. This is a very important step, as it will ensure that your Inventor model is designed in the correct location. When you export the model out to be used in Revit, the Inventor model will automatically be positioned in the correct location relative to the reference geometry.

We now have our Revit view in Inventor. We can further reduce the complexity of the model by expanding the Revit model and toggling off the visibility of objects that aren’t required in the view. We have toggled off more furniture that is not required in the design.

3. Create or import Inventor design using Revit geometry as a reference.

We can now leverage Inventor’s powerful modelling capabilities to create our bespoke shelving unit. We will use Inventor’s Frame Generator to create the structure of our shelving unit, whilst using the walls to shape our design. You can use the Assembly to create annotated drawings or presentations for installation or fabrication instructions, which includes the referenced Revit model.

4. Export Inventor design out to Revit.

Now that we have the shelving unit designed in Inventor, we can use our export tools to export this file as an IFC or RVT model, which we can then import into our Revit project. We first need to hide the reference model by right clicking on it and toggling off the visibility. Select File > Export > RVT. This will bring up the simplification Tool, and you will see that the output type already has Revit Model selected.

When exporting files to Revit, it is best practice to simplify the model to only include data that is required for the project. If you would like to learn more about the simplification tool, this blog post goes into more detail on all the options available to you. Once you are happy with your simplification, press OK to start the export.


5. Import Inventor design into Revit.

Now that we have exported our Inventor model, we can link it into our original Revit model by going to Insert > Link Revit. You will see that the Revit model is placed precisely in the correct location.

6. The circular workflow.

Quite often changes are made to a project late in the design process, and this can impact a lot of factors. Because there is a live link between the Revit model and the Inventor assembly, any changes to the Revit model will be carried through to the Inventor assembly, unless that link is manually broken. This allows us to utilise the parametric capabilities of Inventor to allow our design to automatically update if there are any changes in the Revit Model. We will test this by decreasing the gap between the back wall and the chair of the Revit model. Before doing this, we measured the width of the bespoke shelving unit as 2732 mm, whilst constraining the position of the unit offset at 50 mm from the walls

After updating the Revit model, we updated the reference file in Inventor. We can see that the position of the shelving unit is still 50 mm from the walls, and because we used the geometry of the walls to determine the size of the unit, we can see that its width has increased to 2844 mm.

von Michael Plat 5. November 2025
Gemeinsam mit Leica Geosystems haben wir einen Videokurs entwickelt, der den Aufbau eines historischen Dachstuhls in Autodesk Revit zeigt. Wir führen euch Schritt für Schritt durch den gesamten Prozess – von der Punktwolke bis zum fertigen 3D-Modell. Im Kurs werden zwei Ansätze vorgestellt: die klassische Modellierung mit Trägerfamilien und die adaptive, parametrische Arbeitsweise – mit deutlichen Unterschieden in Präzision und Flexibilität. Der Schwerpunkt liegt auf der adaptiven parametrischen Modellierung – einer Methode, mit der sich selbst komplexe Geometrien flexibel und effizient abbilden lassen. Ziel des Kurses Erstellung eines Revit-Modells einer historischen Dachkonstruktion (Holzbau), das auf einer Punktwolke basiert. Dabei werden zwei Methoden verglichen:  Klassische Modellierung mit Balkenfamilien Adaptive Modellierung mit parametrischen Familien Kursablauf – Arbeitsschritte Vorbereitung Archiv mit Projektdateien herunterladen und entpacken Projekt in Autodesk Recap anlegen (E57-Datei importieren) Punktwolke bereinigen und Koordinatenursprung korrekt setzen Einrichtung in Revit Neues Projekt starten, Punktwolke verknüpfen Achsen, Ebenen und Bearbeitungsbereiche anlegen Punktwolke in Revit richtig platzieren und fixieren Sichtbarkeitsbereiche (Scope Box, View Range) einstellen Konzeptionelle Modellierung Erstellung einer konzeptionellen Dachform mit Referenzpunkten und -linien Aufbau von Dach- und Turmgeometrien Parametrische Steuerung (z. B. Dachwinkel, Höhen, Punkte) Erstellung von adaptiven Linien und Flächen für spätere Holzrahmen Architektonische Modellierung Aufbau von Dach-, Boden- und Wandflächen auf Basis der konzeptionellen Form Einfügen von Öffnungen (Fenster, Schornsteine) Arbeiten mit Ansichtsvorlagen und Sichtbarkeitseinstellungen Klassische Holzmodellierung Verwendung einer Trägerfamilie (Beam Family) Balken nach Punktwolkengeometrie ausrichten Manuelle Winkel- und Schnittanpassungen über Parameter Nachteile: hohe manuelle Nacharbeit bei Änderungen Adaptive Holzmodellierung Verwendung adaptiver Komponentenfamilien mit Referenzlinien Automatische Anpassung an konzeptionelle Form Platzierung von Sparren, Pfetten, Stützen und Streben Parametrische Steuerung von Winkeln, Offsets und Längen Deutlich flexiblere Anpassung an Änderungen der Form Verfeinerung und Detailierung Einfügen von Diagonalsparren, Querstreben, Pfetten und Stützen Anwendung von Schnittfamilien zur präzisen Verbindungen Überprüfung der Anpassungsfähigkeit (Parametrisierungstest) Abschluss Zusammenführen der Geometrie Kontrolle in 3D- und Schnittansichten Synchronisation und Abschluss des Projekts Vergleich beider Methoden (klassisch vs. adaptiv)
von AEC Magazine 5. November 2025
AI platform designed to turning know-how from past projects into “design Intelligence” The post AI extracts knowledge from past projects appeared first on AEC Magazine.
von AEC Magazine 4. November 2025
Nexus from CMiC offers natural language processing, “construction intelligence” and agent-driven automation The post AI-powered construction ERP platform launches appeared first on AEC Magazine.
von AEC Magazine 31. Oktober 2025
AI analyses drawings and specifications then automatically extracts product information The post mbue launches AI-powered submittals appeared first on AEC Magazine.
von AEC Magazine 31. Oktober 2025
New tool helps build stronger financial cases for water infrastructure investments The post CivilSense ROI Calculator launches appeared first on AEC Magazine.
von AEC Magazine 31. Oktober 2025
Planradar report reveals inconsistent QA/QC leads to reduced visibility, putting projects at risk of higher costs and lower margins. The post Inconsistent QA/QC standards threatening construction profits appeared first on AEC Magazine.
von AEC Magazine 29. Oktober 2025
Structural analysis and design software puts spotlight on mobile loads and code compliance The post Scia Engineer 2026 launches appeared first on AEC Magazine.
von AEC Magazine 29. Oktober 2025
Digital twin pilot project analyses data captured by real-time cameras The post City of Raleigh using AI to gain insight into traffic appeared first on AEC Magazine.
von AEC Magazine 29. Oktober 2025
Acquisition will help strengthen OpenSpace’s “Visual Intelligence Platform” The post OpenSpace acquires construction progress tracking firm Disperse appeared first on AEC Magazine.
von AEC Magazine 9. Oktober 2025
The hidden threat inside EULAs, Autodesk shows its AI hand, Chaos embraces AI and lots more The post AEC Magazine September / October 2025 appeared first on AEC Magazine.